
Longitudinal Dynamic Analyses of Depression and Academic 
Achievement in the Hawaiian High Schools Health Survey using 
Contemporary Latent Variable Change Models

Jack McArdle,
University of Southern California

Fumiaki Hamagami,
Hawaii State Hospital

Janice Y. Chang, and
University of Hawaii, Manoa

Earl S. Hishinuma
University of Hawaii, Manoa

Abstract

The scientific literature consistently supports a negative relationship between adolescent 

depression and educational achievement, but we are certainly less sure on the causal determinants 

for this robust association. In this paper we present multivariate data from a longitudinal cohort-

sequential study of high school students in Hawai‘i (following McArdle, 2009; McArdle, Johnson, 

Hishinuma, Miyamoto, & Andrade, 2001). We first describe the full set of data on academic 

achievements and self-reported depression. We then carry out and present a progression of 

analyses in an effort to determine the accuracy, size, and direction of the dynamic relationships 

among depression and academic achievement, including gender and ethnic group differences. We 

apply three recently available forms of longitudinal data analysis: (1) Dealing with Incomplete 

Data -- We apply these methods to cohort-sequential data with relatively large blocks of data 

which are incomplete for a variety of reasons (Little & Rubin, 1987; McArdle & Hamagami, 

1992). (2) Ordinal Measurement Models (Muthén & Muthén, 2006) -- We use a variety of 

statistical and psychometric measurement models, including ordinal measurement models to help 

clarify the strongest patterns of influence. (3) Dynamic Structural Equation Models (DSEMs; 

McArdle, 2009). We found the DSEM approach taken here was viable for a large amount of data, 

the assumption of an invariant metric over time was reasonable for ordinal estimates, and there 

were very few group differences in dynamic systems. We conclude that our dynamic evidence 

suggests that depression affects academic achievement, and not the other way around. We further 

discuss the methodological implications of the study.
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Introduction

Many important studies in psychology deal with the relationships among some forms of 

psychopathology connected with real-life outcomes. Questions about the likely sequence of 

effects are often a fundamental aspect of developmental research (e.g., Ferrer & McArdle, 

2010; McArdle, 2009; Flaherty, 2008). In cross cultural research questions raised about 

cultural differences in beliefs about normal and clinical psychological behaviors have led 

some researchers to conclude that both measurement and treatment should be culture 

specific (Higgenbothman & Marsella, 1988; Werner & Smith, 2001). However, other 

researchers using different analytic approaches seem to have come to notably different 

conclusions (e.g., regarding measurement, Beals, Manson, Keane, & Dick, 1991; Johnson, 

Danko, Andrade, & Markoff, 1997). A key question raised from such analyses is how much 

of the resulting differences is due to the people themselves, and how much of these 

differences are due to the methods of data analysis used. We consider whether different 

results can come from different forms of analysis.

In this paper we present multivariate data from a longitudinal cohort-sequential study of 

high school students in Hawai’i (see McArdle, 2009, McArdle, Johnson et al., 2001). We 

first describe the full set of data on academic achievements and self-reported depression. We 

then carry out and present a progression of analyses in an effort to determine the accuracy, 

size, and direction of the gender and ethnic group differences in the dynamic relationships 

among depression and academic achievements. We apply three recently available forms of 

longitudinal data analysis: (1) Dealing with Incomplete Data -- We apply these methods to 

cohort-sequential data with relatively large blocks of data which are incomplete for a variety 

of reasons (Little & Rubin, 1987; McArdle & Hamagami, 1992). (2) Ordinal Measurement 

Models (Muthén & Muthén, 2006; Hamagami, 1998) -- We use a variety of statistical and 

psychometric measurement models, including ordinal measurement models to help clarify 

the strongest patterns of influence. (3) Dynamic Structural Equation Models (DSEMs; 

McArdle, 2009) -- The DSEMs are used here to provide a formal assessment of the possible 

directionality of effects from observational data, and we include group differences in 

dynamic systems. After the full set of dynamic analyses is presented we conclude that our 

dynamic evidence suggests that depression affects academic achievement, and not the other 

way around.

Prior Research on Depression and Academic Achievement

Despite the enormous amount of research that has been conducted on educational 

achievement, only a small proportion of this research body has investigated the association 

between academic achievement in the form of academic achievements in school and 

individual psychological adjustment such as depressive symptoms. A parallel publication to 

the present study is by Hishinuma, Chang, McArdle and Hamagami (in press). Their Table 1 

is an overview of previously published research, and this summary suggests prior research 

has found significant but small, negative associations between indicators of academic 

achievement, such as high school grade point average (GPA), and depressive symptoms. It 

seems that when the GPA range was not restricted and the depressive symptom measure was 

not combined with anxiety, the correlation between GPA and depressive symptoms ranged 
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from −.16 to −.36 (see their Table 1), with only a few exceptions. This negative relationship 

between GPA and depressive symptoms was further confirmed by other studies. For 

example, Juvonen, Nishina, and Graham (2000), utilizing structural equation modeling 

(SEM) and a middle school sample, found evidence for perceived peer harassment leading 

to psychological distress (i.e., depressive symptoms as measured by the Children’s 

Depression Inventory, self-worth), which in turn leading to poor school adjustment (i.e., 

actual GPA, number of classroom hours missed during semester of data collection). This 

suggested that depressive symptoms occurred before lowered GPAs, although this study was 

not longitudinal in nature.

In attempting to determine any causal relationships between GPA (school achievement) and 

depressive symptoms (psychological adjustment), it is likely that longitudinal studies will be 

needed (see Duncan, 1975; Flaherty, 2008; McArdle, 2009). For example, Lehtinen, 

Raikkonen, Heinonen, Raitakari, and Keltikangas-Jarvinen (2006) assessed parents of 

Finnish students when the students were 9, 12, and 15 years of age, and then assessed the 

students when they were 21–36 years of age. The researchers found an overall negative 

association between GPA and later depressive symptoms, but no consistent relationship 

across age and gender. In particular, 12- and 15-year old girls’ lower GPA predicted 

depressive symptoms 12 and 17 years later. Despite GPA was thought to be the predictor of 

the depressive symptoms, the following conclusion was drawn: “The current findings, thus, 

suggest that depressive outcomes have a detrimental effect on success at school rather than 

vice versa: presumably, failure to cope with challenges at school could lead to different 

kinds of vicious circles, in which case deterioration of school performance would serve as a 

risk factor for adult depressive outcomes …” (p. 289).

A variety of other relevant studies are reviewed by Hishinuma et al. (in press). In general, 

only two studies could be identified that included both GPA and depressive symptoms in a 

longitudinal design that involved examining trajectories. Repetto and colleagues (2004) 

surveyed African American high school students from the 9th grade with GPAs of 3.0 or 

lower, at-risk for high school dropout, and not diagnosed with emotional impairment or 

developmental disability. Depressive symptoms (six items from the Brief Symptom 

Inventory) and GPA (8th to 10th grades) were utilized; however, the analyses did not include 

incomplete data. The students were clustered in four groups based on their longitudinal 

depressive symptoms: (1) consistently high; (2) consistently low; (3) decreasing; and (4) 

increasing. Using multivariate analysis of variance (MANOVA), students who were 

consistently high in depressive symptoms were more likely to be female, have anxiety and 

stress, and have lower self-esteem and GPA. In independent work, Johnson and colleagues 

(2006) examined academic achievement trajectories in adolescences in the Minnesota Twin 

Family Study. Although data on a composite measure of “grades” were collected across 

multiple years, the depression indicator was collected only in Year 1 and was not 

significantly associated with the measure of academic achievement.

The issues surrounding the scaling of variables have generated a great deal of prior research 

on these kinds of measures. Scales of achievement have been developed which have interval 

properties (e.g., the Woodcock-Johnson scales, the American College Testing [ACT], etc.; 

see McArdle & Woodcock, 1998), but easy-to-obtain scales such as GPA, have engendered 
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lots of criticism. “In college, for example, instructors grade students on an ordinal scale, A, 

B, C, D, F, and the registrars assign to these grades the numbers 4, 3, 2, 1, 0 respectively, in 

order to compute the ‘grade point average.’ Clearly such assignments are arbitrary …” 

(Duncan, 1975, p. 159).

Similarly, the use of the 20-item scale of the Center for Epidemiologic Studies-Depression 

(CESD, Radloff, 1977) was critiqued soon after it started to be used (Devins & Orme, 1985). 

Although group comparisons on the CESD scale have been around for a long time (e.g., 

Gatz & Hurwitz, 1990), the more recent work of Cole, Kawachi, Maller, and Berkman 

(2000) pointed out significant item bias between African American and White American 

responses to the CESD items (also see Yang & Jones, 2007). In our own prior work 

(McArdle, Johnson et al., 2001) we summarize the previous factor analytic work on the 

depressive symptom scales and find evidence for at least 3 or 4 measurable factors in the 

CESD (also see Beals et al., 1991). In this prior work, we also show how a simple form of 

rescaling of the CESD can lead to a simple and direct interpretation of resulting score as 

“the number of days of depression symptoms reported per week” (WCESD).

On a theoretical note, we are aware that the GPA and CESD scores have substantially 

different norms of reference. That is, the CESD is based on the same set of items measured 

on the same rating scale, so it is possible to examine both systematic growth and rapid 

changes in a common scale. However, GPA is not an ability score with a free range; instead, 

GPA is a score which is relative to a grade norm—that is, even if an individual presents a 

constant GPA across Grades 9–12, they are likely to be growing in the ability underlying the 

academic performance. In this way, GPA is much like an IQ (i.e., mental age / chronological 

age) score rather than a raw test score (i.e., mental age), and this limits our interpretations of 

growth and change that can emerge from the analysis of GPA trajectories.

Based on the overall literature, the past research on this topic seems limited in several 

respects:

1. The sample sizes are relatively small.

2. The samples have not involved large samples of Asian American and Pacific 

Islander adolescents.

3. The literature shows little consideration of longitudinal data on GPA and 

depressive symptoms.

4. The literature shows little consideration of the issues of incomplete data in analyses 

(e.g., Repetto et al., 2004) and in SEM (Juvonen et al., 2000).

5. There is little consideration given to the measurement or scaling of the key 

outcome variables as part of data analysis, even though it is known that scaling of 

measurements is critical to understanding lead-lag relationships.

6. More recent SEM analyses have been presented using more contemporary growth 

and trajectory modeling (e.g., Hong, Veach, & Lawrenz, 2005; Johnson et al., 

2006; Juvonen et al., 2000; Lehtinen et al., 2006; Repetto et al., 2004; Shahar et al., 

2006).
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The approach taken here attempts to combine and overcome problems of all six types. The 

models used here are all based on incomplete longitudinal data, and the DSEM analysis 

approach has been used in several recent studies (see Ferrer & McArdle, 2010; Gerstorf et 

al., 2009; McArdle, 2009). In examples related to this specific problem, McArdle and 

Hamagami (2001) examined longitudinal data from the National Longitudinal Study of 

Youth (NLSY) and concluded that reading ability was a precursor to anti-social behavior. In 

a more extensive study using the NLSY, Grimm (2007) studied academic achievement and 

depression, and he concluded that academic achievement preceded the development of 

depression. These researchers all emphasize that people using the same data could come to 

different dynamic conclusions using different multivariate models. Therefore, we examine a 

few alternatives based on different forms of measurement models here.

The Hawaiian High Schools Health Survey (HHSHS) Study

A wide variety of psychosocial problems are being studied by the National Center on 

Indigenous Hawaiian Behavioral Health (NCIHBH), including the relationships between 

psychological health and culture. Data from a variety of sources indicate that persons of 

aboriginal Hawaiian ancestry are more “at risk for psychological problems” than residents of 

Hawai‘i of other ethnic backgrounds (e.g., Andrade et al., 2006; Danko, Johnson, Nagoshi, 

Yuen, Gidley, & Ahn, 1988; Werner & Smith, 2001; Yuen, Nahulu, Hishinuma, & 

Miyamoto, 2000). The aim of the HHSHS study was to assess the adjustment of a large 

community-based sample of adolescents of Hawaiian ancestry as well as a comparison 

sample of adolescents from other ancestral groups. The longitudinal approach used in prior 

work in the Hawaiian islands (Werner & Smith, 2001) partly inspired this cohort-sequential 

data collection design. The study further investigated the importance of demographic 

variation and measures of identification with the Native Hawaiian culture with indices of 

adjustment.

The NCIHBH has already conducted studies involving self-reported GPA and adjustment, 

utilizing a primarily Asian American and Pacific Islander high school sample. A statistically 

significant and negative relationship of −.18 (p < .05) was found between self-reported GPA 

and of the CESD (Hishinuma, Foster et al., 2001; Hishinuma et al., 2006). This negative 

association remained significant even when controlling for other demographic variables (i.e., 

ethnicity, gender, grade level, main wage earners’ educational attainment, main wage 

earners’ employment status) and academic measures (i.e., actual cumulative GPA, absolute 

difference between self-reported GPA and cumulative GPA).

This negative relationship found among GPA and CESD scores was particularly salient for 

children and adolescents of ethnic minority ancestry (Hishinuma, Foster et al., 2001; 

Hishinuma et al., 2006). Given the general finding of lower educational achievement being 

associated with poorer psychological adjustment (e.g., Hishinuma, Foster et al., 2001), and 

given the differential academic achievement among racial and ethnic groups (e.g., African 

Americans with lower high school GPAs than Caucasians; Caucasians with lower high 

school GPAs than Asian-Pacific Islanders), this area of study is critical in understanding the 

well-being of ethnic minorities. In the context of the present study, Native Hawaiian 
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adolescents tend to have lower levels of achievement than non-Hawaiians in Hawai‘i (e.g., 

Hishinuma, Foster et al., 2001; Hishinuma, Johnson et al., 2001; Hishinuma et al., 2006).

Dynamic Modeling with Incomplete Data

The previous HHSHS analyses described the use of a multiple imputation (MI) procedure 

for handling incomplete data (McArdle, Johnson et al., 2001). This approach is reasonable 

for data missing within or over time, and it can be used when the incompleteness is due to 

attrition and other factors and the lack of data are considered missing at random (MAR; after 

Little & Rubin, 1987). The same assumptions underlie analyses based on any latent variable 

SEM which included “all the data”—not simply the complete cases (e.g., Horn & McArdle, 

1980; McArdle, 1996). We expect non-random attrition, but our goal is to include all the 

longitudinal and cross-sectional data to provide the best estimate of the parameters of 

change as if everyone had continued to participate (Diggle, Liang, & Zeger, 1994; Little, 

1995; McArdle & Anderson, 1990; McArdle & Bell, 2000; McArdle & Hamagami, 1991; 

McArdle, Prescott, Hamagami, & Horn, 1998). In computational terms, the available 

information for any participant on any data point (i.e., any variable at any occasion) is used 

to build up maximum likelihood estimates (MLEs) that optimize the model parameters with 

respect to any available data.

Another aspect of the methods used here is the investigation of a measurement model for 

each key outcome variable. In the case of GPAs, the scores are first treated in the typical 

way, as an interval scale, but due to its more uniform distribution an effort is made to 

consider this more realistically as an ordinal scale. Likewise, the CESD measurement of 

depressive symptoms is considered to be multi-factorial, so only some items are selected, 

and then due to the resulting skewness, models with both interval scaling and ordinal scaling 

are considered here. In addition, the requirement of invariance of measurement over high 

school grades is considered for each outcome separately in latent curve models, and then 

together in the dynamic systems models. These final dynamic models are compared over 

groups defined by gender and ethnicity.

Method

Participants

In previous analyses, we selected data from any student who participated in the HHSHS in 

1993 and 1994 (N>5,000; e.g., McArdle, Johnson et al., 2001). The analyses presented here 

are based on survey data obtained from high school students in Hawai‘i who participated in 

at least one of five waves of measurement (1992–1996; see Andrade et al., 1994, 2006). In 

this longitudinal-cohort study, a large sample (N=7,317) of high school students were 

surveyed on a variety of well-known psychometric instruments designed to indicate different 

aspects of psychological health. These data reflect a large but generally non-representative 

epidemiological sample of high school students; namely, in this study we intentionally 

selected primarily Hawaiian communities in Grades 9–12 from three of Hawai‘i’s major 

islands.
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For the purposes of those analyses, we classified all students into one of four broad groups. 

Hawaiian versus non-Hawaiian ancestry was based on questions about the parents’ ethnic 

background. Students whose parents had any Hawaiian ancestry were classified as 

“Hawaiian” and all others were classified as “non-native Hawaiians.” A second grouping 

was based on the students’ self-reported gender (as Male or Female). These two groupings 

led to four student groups: (1) Native Hawaiian Females (N=1,733), (2) Native Hawaiian 

Males (N=1,456), (3) Non-native Hawaiian Females (N=973), and (4) Non-native Hawaiian 

Males (N=881). Additional information about these four groups can be found in other more 

detailed reports (see Andrade et al., 1994, 2006). The same HHSHS data collection is used 

here, but now we use all the longitudinal data available at any wave of measurement.

Procedures

Parents and students were given written notification of the nature and purpose of the 

research study prior to administration, with the opportunity for parents to decline their 

youths’ participation. Students who provided their assent were administered the survey in 

their homerooms by their teachers. The majority of the surveys were completed by the 

students within 30–45 minutes. Based on the existing enrollments, approximately 60% of 

the students were surveyed. Separate analyses indicated that a higher proportion of males 

were not surveyed. In addition, those who were not surveyed had more absences, 

suspensions, and conduct infractions, and had lower actual GPAs (Andrade et al., 2006). All 

procedures were approved by the University of Hawai‘i’s Institutional Review Board.

Patterns of Available Longitudinal Data

This investigation entailed a cross-sequential (i.e., cross-sectional and longitudinal) design 

whereby students from two to five high schools (located on three of the Hawaiian Islands) 

were surveyed across a five-year period (school years 1991-92 to 1995-96). The initial plan 

was to over-sample Native Hawaiian adolescents by surveying students from three high 

schools (High Schools 1–3) that had a large proportion of youths of Native Hawaiian 

ancestry. Table 1 provides a description of the patterns of responses at the individual level 

(see also Andrade et al., 2006) and Figure 1 is a plot of a small sample of trajectories from 

this larger longitudinal database. Figure 1a is a plot of the trajectories of the GPAs of 30 

randomly selected individuals, and Figure 1b is a plot of the same 30 people on their CESD 

scores. Complex patterns of fluctuation are evident and the connection among these 

trajectories is not obvious.

The HHSHS data used here are based on a complex sampling strategy highlighted in Table 

1. This survey was conducted for the first three years of the study (1991-92 to 1993-94 

school years) and for all high school grade levels (9th−12th). During Year 1 (1991-92), the 

decision was made to also survey in Year 2 (1992-93) students from two other high schools 

(High Schools 4–5) that would allow for more meaningful comparisons with non-Hawaiian 

adolescent cohort groups. As with High Schools 1–3, students from High Schools 4–5 were 

surveyed for all high school grade levels (9th−12th) in Years 2–3 (1992-93 & 1993-94). In 

order to obtain complete longitudinal data across all four grade levels for the 9th graders who 

were surveyed in Year 1 (1991-92) for High Schools 1–3, and for the 9th graders who were 

surveyed in Year 2 (1992-93) for High Schools 4–5, the decision was made to: (a) in Year 4 
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(1994-95) survey the 12th graders from High Schools 1–3, and (b) in Year 4 (1994-95), 

survey 11th and 12th graders from High Schools 4–5, and in Year 5 (1995-96) survey 12th 

graders from High Schools 4–5.

Among students who were in the 9th grade, 3,644 (50.3%) never had an opportunity to take 

the survey, 2,938 (40.6%) took the survey, and 660 (9.1%) had the opportunity to take the 

survey, but did not for whatever reason (e.g., parent declined, student declined, student 

moved to another school). Seventy-five participants were not included in the previous count 

due to anomalies such as repeating a grade level. For the 10th grade: 3,286 (45.4%), 2,707 

(37.4%), 1,249 (17.3%), respectively; for the 11th grade: 2,685 (37.1%), 2,984 (41.2%), 

1,573 (21.7%), respectively; and for 12th grade: 1,822 (25.2%), 3,498 (48.3%), 1,922 

(26.5%) respectively.

This series of data collection decisions and methods resulted in the project starting during 

the 1991-92 school year, ending during the 1995-96 school year, and variably surveying 

9th−12th graders across five high schools at different points in time. A total of 7,317 students 

were surveyed resulting in 12,284 completed questionnaires. We note that the potential for a 

lack of convergence of these data (McArdle & Hamagami, 1991) is considered in all 

analyses.

Measures

Self-reported Grade Point Average (GPA)—This variable was operationally defined 

by a single survey question, “On the average, what were your grades on your last report 

card?” with 10 response choices offered. This measurement of academic achievement 

demonstrated high concurrent validity with actual cumulative GPA in a sub-study of the 

same persons (r=.76; Hishinuma, Johnson et al., 2001) and construct validity with 

adjustment indicators, arrests/serious trouble with the law, and substance use (Hishinuma, 

Foster et al., 2001; Hishinuma et al., 2006).

In subsequent calculations, we reconstructed this GPA variable using numerical values (in 

parentheses): A (4.0), A- (3.7), B+ (3.3), B (3.0), B- (2.7), C+ (2.3), C (2.0), C- (1.7), “D or 

less” (1.0), or “Don’t know” (converted to a missing score). Table 2a gives the percent of 

persons responding to each of these categories, and here we find a wide spread of responses 

at each year, with the highest proportion (>20%) of students suggesting they had a C+ 

average each year. As can be seen in Table 2a, we also found lower proportions of A 

averages and greater proportion of D averages over successive grades. We note that any 

selection due to flunking out of high school due to low GPA is not specifically indicated in 

these data (except perhaps by the earlier GPAs). Figure 2 includes histograms describing 

these GPA data at each grade.

Self-Reported Depression—In one section of the 30–45 minute survey all students were 

asked to rate their depressive symptoms using the well-known Center for Epidemiological 

Studies-Depression (CESD) inventory (see Radloff, 1977; Zimmerman & Coryell, 1994). In 

the standard scoring system, the 20 CESD items are scored on a 0 to 3 scale and these scores 

are summed over the 20 items to form a CESD total score ranging from 0 to 60 (see Santor 

& Coyne, 1997). As mentioned earlier, a practical scoring system for the CESD was created 
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and used in our earlier work (in McArdle, Johnson et al., 2001), and we expand upon this 

process here. The typical CESD item responses are based on “the number of days per week,” 

with four response categories: (1) Rarely or none of the time (<1 day), (2) Some or a little of 

the time (1–2 days), (3) Occasionally or a moderate amount of the time (3–4 days), and (4) 

Most or all of the time (5–7 days). It is possible to simply treat this as a 1–4 scale. As an 

alternative, it is also possible to alter the scale points to more directly reflect the average 

number of days per week for each symptom (so 1=0.5 days, 2=1.5 days, 3=2.5 days, and 

4=6 days).

The unidimensionality of the CESD items has been questioned in prior research (Beals, 

Manson, Keane, & Dick, 1991; Dick, Beals, Keane, & Manson, 1994; Radloff, 1977). In our 

own work on this topic (McArdle, Johnson et al., 2001), we found more than one common 

factor were needed to account for all interrelationships among the CESD items. In these 

analyses, the first common factor was indicated by the most items (13) and these items 

reflected the basic construct of depression. Therefore, we considered only these 13 items 

here. To simplify the overall scaling, but retain the individual differences across time in 

these scores, we first (1) altered all items to be in the metric of days per week, then (2) 

averaged over the responses to the unidimensional items (13 out of 20), and finally (3) 

rounded the resulting averages into 6 reasonably sized categories of days per week (average 

days per week = 0–1, 1–2, 2–3, 3–4, 4–5, and 5–7). Incomplete data were not placed in any 

specific category.

Table 2b gives the percentage of persons responding to each of these rounded six categories, 

and it is clear that the scale is highly skewed. The first category (0–1 days) includes over 

64% of the responses, while the last category (5–7 days) includes less than 0.5% of 

responses within any year. Figure 3 includes histograms describing these WCESD data at 

each grade level. This skew seems rather severe, but a likely reflection of the construct of 

depressive symptoms (i.e., with no positive scores); therefore, we try to examine this 

variable with this statistical issue in mind.

Modeling with Incomplete Data

Incomplete data techniques are now available in many current computer programs (e.g., 

SAS PROC MIXED; Littell, Milliken, Stroup, Wolfinger, & Schabenberger, 2006; Verbeke, 

Molenberghs, Krickeberg, & Fienberg, 2000), and we use Mplus 5.0 (Muthén & Muthén, 

2006; see Ferrer, Hamagami, & McArdle, 2004). The Mplus program seems advantageous 

because it also allows us to deal with (a) survey sampling weights, (b) categorical 

measurement models, (c) multilevel models, and (d) a random-slopes approach to latent 

curve models (but see Ghisletta & McArdle, in press). The goodness-of-fit of each model 

presented here will be assessed using classical statistical principles relying on the model 

likelihood (fMLE) and change in fit (χ2). In most models to follow, we use the MAR 

convergence assumption to deal with incomplete longitudinal records, and we discuss these 

assumptions later (e.g., Cnaan, Laird, & Slasor, 1997; Little, 1995).

These statistical models are also used to address group differences about the CESD and 

GPA at several different levels, and comparative statistical results are presented in the next 

four sections. Due to our relatively large sample size (N=7,317), only estimated coefficients 
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whose 99% confidence boundary does not include zero are considered accurate estimates of 

effects. While this is precisely equivalent to stating an effect is not significant (at the α <.01 

test level), this emphasis on the accuracy of estimates is more consistent with our overall 

modeling strategy. The overall goodness-of-fit of these models can also be examined in 

several ways (see Bollen & Long, 1993). However, most current SEM analyses rely on 

comparing observed and expected values based on a non-central chi-square (χ2) distribution 

(paralleling the F-distribution of ANOVA). Due to the relatively large sample size 

(N>7,000), we also examine statistical differences between models using the Browne and 

Cudeck (1993) Root Mean Square Error of Approximation (RMSEA, εa) and we calculate 

the “probability of close fit” to indicate a model with a discrepancy εa < .05. Our main goal 

is to use these empirical analyses to separate (a) which models seem consistent with the data 

and should be useful in future research, from (b) models which seem inconsistent with the 

data and should be dropped from further work.

Dealing with Non-Normal Outcomes

The evaluation of models for change over time is conceptually based on longitudinal 

analyses of multiple trajectories (e.g., McArdle, 2009). There is a long history of embedding 

categorical concepts within repeated measures longitudinal data (e.g., Hamagami, 1998; 

Koch, Landis, Freeman, Freeman, & Lehnen, 1977; Muthén, 1984). These approaches can 

clarify the results if we have either (a) categorical outcomes which are not ordinal, or (b) if 

the order categories are not equal in the interval between scale points. There are many 

techniques that can be used to deal with non-normally distributed outcomes and we will not 

be exhaustive here.

One classic way to deal with non-normal outcomes is to use score transformations, but these 

will not help here due to the extreme limits of some of our outcomes (e.g., Table 2b). 

Instead, we first use standard SEM approaches for estimating growth and change under the 

assumption of an interval scaling of the outcomes (as in McArdle, Johnson et al., 2001). 

This is not often based on MLE-MAR assumptions, but it is possible. In a parallel set of 

analyses we consider the same longitudinal data but we expand the model to include a set of 

ordinal thresholds (τsee Hamagami, 1998) and we highlight any differences in the 

substantive results for the same data.

To carry out calculations for the ordinal approach, we rely on the approach created by 

Muthén (for LISCOMP software; see Muthén & Satorra, 1995). In this approach, the first 

step is to use MLE-MAR to estimate the empirical distance between each entry of a 

categorical variable. Since we have 9 possible ratings of GPA at each occasion, we can 

estimate 8 thresholds describing the difference between these categories. Since we have only 

6 possible categories of Weekly CESD, we estimate 5 thresholds to describe the difference 

among these categories. In the second step, we assume the underlying latent variables are 

normally distributed (with mean 0 and variance 1) and we estimate the correlations among 

latent variables using polychoric procedures. Finally, in a third step, a consistent estimator 

of the asymptotic covariance matrix of the latent correlations is based on a Weighted Least 

Squares Mean (WLSM) Adjusted estimator. Additional model assumptions based on the 

structure of the thresholds (i.e., invariant over time) or the model correlations (following a 
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latent curve hypothesis) are added and the comparative goodness of fit is obtained. If 

needed, formal tests of the difference between models are made more accurate by using 

kurtosis adjustments (scaling correction factors; see Browne, 1984; Satorra & Bentler, 

1994). In any case, each of these steps is now fairly easy to implement with contemporary 

software such as Mplus (Muthén & Muthén, 2006).

Methods for Univariate Dynamic SEM Analyses

All analyses presented will be based on longitudinal structural equation models (e.g., 

McArdle & Nesselroade, 2003, in press; Singer & Willett, 2003). To be clear, we will 

emphasize the representation of trajectories over time and the dynamic interpretations of 

model parameters (see McArdle, 2009; McArdle & Hamagami, 2004). In recent research, 

we have found it most flexible to represent the classical growth and change models based on 

multiple latent change scores (see Figure 4; McArdle, 2009). These models are practically 

useful because they encompass the popular latent growth models and autoregressive time 

series models. In addition, because they are formed in a different way, they easily extend to 

multivariate forms (to follow).

More formally, we first assume we have observed scores X[t] and X[t-1] measured over a 

defined interval of time (Δt), but we assume the latent variables (g[t]) are defined over an 

equal interval of time (Δt=1). This definition of an equal interval latent time scale is non-

trivial because it allows us to eliminate Δt from the rest of the equations. This allows us to 

use latent scores g[t] and g[t-1], residual scores u[t] representing measurement error, and 

latent change scores Δg[t]. Even though this change Δg[t] is a theoretical score, and not 

simply a fixed linear combination, we can now write a structural model for any latent 

change trajectory. This simple algebraic device allows us to generally define the trajectory 

equation based on a summation (Σ i=1, t) or accumulation of the latent changes (Δg[t]) up to 

time t.

These latent change score models allow a family of fairly complex nonlinear trajectory 

equations (e.g., non-homogeneous equations). These trajectories can be described by writing 

the implied basis coefficients (Aj[t]) as the linear accumulation of first differences for each 

variable (ΣΔg[j], j=0 to t). Of course, this accumulation can be created from any well-

defined change model, and therefore, the procedure is quite flexible (e.g., see Ghisletta & 

McArdle, in press).

On a practical note, these latent change score structural expectations are automatically 

generated using any standard SEM software (e.g., R, LISREL, Mplus, Mx, etc.). That is, we 

do not directly define the basis (A[t]) coefficients of a trajectory equation, but we directly 

define changes as an accumulation of the first differences among latent variables. These 

dynamic models permit new features of the factor analytic assessment of the previous 

models (e.g., Ferrer & McArdle, 2004; McArdle & Hamagami, 2003, 2004).

Methods for Bivariate Dynamic SEM Analyses

A bivariate dynamic model can be used to relate the latent scores from one variable to 

another over time (see Figure 5). More formally, we first assume we have observed both sets 

McArdle et al. Page 11

Struct Equ Modeling. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



of scores Y[t] and X[t] measured over a defined interval of time (Δt), but we assume the 

latent variables are defined over an equal interval of time (Δt=1). This is most useful when 

we start to examine time-dependent inter-relationships among multiple growth processes. In 

general, we write an expansion of our previous latent difference scores logic as the bivariate 

dynamic change score model. In this model, the g1 and h1 are the latent slope score which is 

constant over time, and the changes are based on additive parameters (αy and αx), 

multiplicative parameters (βy and βx), and coupling parameters (γyx and γxy). The coupling 

parameter (γyx) represents the time-dependent effect of latent x[t] on y[t], and the other 

coupling parameter (γxy) represents the time-dependent effect of latent y[t] on x[t]. When 

there are multiple measured variables within each occasion, additional unique covariances 

within occasions (uy[t] ux[t]) are identifiable as well.

Results

Initial Statistical Description Including Thresholds

An initial description of some relevant summary statistics appears in Table 3 and Table 4. 

Here we include estimated thresholds, means, deviations, and correlations estimated using 

the most typical incomplete data algorithms (MLE-MAR in Mplus 5.0; Muthén & Muthén, 

2006; program scripts available on our website). One thing to note is that the interval score 

estimates presented here do not have any correction for non-normality, while the ordinal 

score estimates have been corrected.

Table 3 presents the estimated thresholds for GPA (now termed GPA*) and the WCESD 

(now termed WCESD*). There were obtained using the SEM software Mplus 5.0 under the 

constraint that these thresholds represented differences among the response categories, and 

that they were the same (i.e., invariant MLE) at each of the four grades. We note that this 

simplification of parameters is not a necessary feature of the data, and the scale could 

change from one grade to the next, but this is a prerequisite for all models to follow, and 

therefore, we present it first.

Table 3a shows the estimated thresholds for GPAs from category D to C- (i.e., 1.0 to 1.7) 

has a value of τ1=−2.14. Because this was estimated in a normal probability, or probit 

metric, this value indicates the location on a normal curve for people above and below this 

GPA point (i.e., approximately 2% below, and 98% above). The next estimated value of τ1=

−1.60 suggests a slightly larger number of people are likely to respond between 1.7 and 2.0. 

The vector of eight thresholds T=[ −2.1, −1.6, −0.9, −.00, +0.0, +0.7, +1.3, +2.0] is seen to 

increase ordinally, even though this was not restricted (i.e., it was simply categorical). The 

nonlinear nature of these changes in responses can be seen from the difficulty of shifting 

between responses formed here as a ratio of the estimated differences to the observed 

differences (as in McArdle & Epstein, 1987). These differences would be constant if the 

scaling was equal interval, but these are Δ=[=0, 1.8, 2.5, 2.1, 0.1, 2.3, 1.5, 3.4], and this 

indicates the apparent difficulty of moving between the response categories not being equal 

to the stated distance. For this reason, linear relations within and among variables are likely 

to be much better represented by an ordinal scale of GPA*.

McArdle et al. Page 12

Struct Equ Modeling. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Table 3b shows the estimated thresholds for the WCESD for the category based on 0 to 1 

days with a value of τ1=0.53. Again, because this was estimated in a probit metric, this value 

indicates the location on a normal curve for people above and below this GPA point (i.e., 

approximately 52% below and 48% above). The next estimated value of τ1=+1.48 suggests 

a slightly smaller number of people are likely to respond between 1 and 2 days. The vector 

of five thresholds T= [ +0.5, +1.5, +2.1, +2.9, +3.8] is seen to increase in an ordered 

progression, even though this was not restricted (i.e., it was simply categorical). The simple 

ratio of the estimated differences to the observed differences would be constant if the scaling 

was equal interval, but these are Δ=[=0, 1.0, 0.7, 0.7, 0.5]. Therefore, these findings reflect 

the difficulty of moving between the response categories not being equal. Thus, we expect 

that linear relations within and among variables are likely to be much better represented by 

this kind of an ordinal scale of WCESD*.

Table 3c is a listing of the means and deviations over four grade levels that would result 

from an interval or ordinal scaling of the two variables. These estimates are all based on 

MLE-MAR, so they utilize all available longitudinal data (see Table 1). GPA in an interval 

scale has easy-to-understand means, which seem to increase over grade levels 9th, 10th, 11th 

and 12th from 2.69, 2.72, 2.78, to 2.95. Once again, high school dropouts have been included 

in these calculations, but only to the degree that we had other measured information (i.e., 9th 

grade GPA). The estimates for the ordinal scaling of the GPA are slightly different 

suggesting the GPA* goes from 0 (fixed for identification purposes) to 0.3 to 0.2 to 0.5, but 

the gain is neither linear nor as large. The estimated standard deviations are reduced in the 

GPA* metrics, and the changes are more complex for the WCESD* metrics.

Table 4 is a listing of the estimated Pearson correlations over four grade levels that would 

result from an interval scale (using invariant means and deviations). The correlations in 

parentheses are polychoric estimates of relationships based on ordinal scaling of the 

variables (using invariant thresholds). Each of these estimates is based on MLE-MAR, and 

therefore, they utilize all available longitudinal data (see Table 1). When comparing Pearson 

correlations and polychoric correlations, we find attenuation of correlations if Pearson 

correlations were opted for analyses due to the fact that measurements are non-normal (as in 

Hamagami, 1998). Table 4a is a list of the correlations of GPA over grade levels, and these 

are strong and positive (~r=+0.5 to +0.6). However, the use of ordinal scoring in GPA* 

yields a slightly higher correlation in every case. Table 4b is a list of the correlations of the 

WCESD over grade levels, and these are almost as strong and positive (~r=+0.4 to +0.5). 

Similar to GPA, however, the use of ordinal scores in WCESD* yields a slightly higher 

correlation in every case, suggesting that using the WCESD* is more accurate. The critical 

cross-correlations over time among these measures is listed in Table 4c for selected pairs of 

variables: (1) GPA[t] and WCESD[t] and (2) GPA[t]* and WCESD[t]*. The GPA[t] and 

WCESD[t] correlations are largely low and negative (~r=−0.06 to −0.15), and the use of the 

ordinal scaling does not seem to change the simple relationships very much (~r=−.04 to −.

22). These differences in the patterns of correlations between Pearson and polychoric 

approaches indicate that dynamic characteristics derived from two different approaches may 

not be exactly the same.
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Results from Univariate Dynamic Models of Grade Point Averages Over Four Grade Levels

The first set of longitudinal results of Table 5 is based on alternative change models for the 

GPA trajectories (in Figure 1a). The first three models (5a, 5b, 5c) assume interval scaled 

data and models are fit in increasing order of complexity. First, a baseline model with 

intercepts only is fitted (not shown) and this yields χ2=398 on df=11. The first model listed 

in Table 5a is the linear change model with one slope (labeled Model 5a) and fits much 

better with χ2=48 on df=8 (so ε=0.027), so the change in fit is large as well (Δχ2=350 on 

Δdf=3). This is remarkably small misfit for such a large sample size (N>7,000). The mean 

intercept for the 9th grade is reasonable (µ0=2.65) and the mean slope is positive but small 

(µ1=0.09) indicating only small average changes over grade levels. The variability in these 

components shows somewhat large initial differences (σ0
2=0.42) with small systematic 

changes (σ1
2=0.02) and larger random changes (ψ2=0.22). The second model (5b) forces the 

systematic slope components to be zero, but allows an autoregressive component (β=0.037) 

to allow changes which accumulate. This auto-regression AR(1) model does not seem to fit 

the GPA data so well (χ2=114 on df=8 so ε=0.044). The third model (5c), termed a Dual 

change, allows both linear and autoregressive changes to occur, and this leads to the best fit 

(χ2=24 on df=7, so ε=0.019). This model suggests more complex changes due to the 

negative mean slope (µ1=−1.79) combined with positive autoregressive changes (β=0.69), 

implying that the GPA would go down over grade levels except for the impact of the prior 

grades GPA.

The second set of three models (Table 5d, 5e, 5f) assume some ordinal thresholds are needed 

and then re-examines the same change models. Here we need to place several additional 

constraints on the latent variables to assure identification (i.e., µ0=0, σ0
2=1) and estimate the 

8 thresholds (τ1−τ8). While we could allow the thresholds to change over grade levels, we 

do not consider this possibility here, and this assumption of scale invariance over grade 

levels leads to additional misfit (but see McArdle, 2007). The scaling coefficients (described 

earlier) range about −2 to +2 but suggest an unequal distance between GPA points. The 

baseline model with intercepts only is fitted (not shown) and this yields χ2=1159 on df=29, 

so the ordinal linear model fitted to these is a great improvement in fit (i.e., χ2=174 on 

df=26, so Δχ2=985 on Δdf=3), with parameters representing some positive changes 

(µ1=0.14, σ1
2=0.04) and larger random changes (ψ2=0.48). (We note that the kurtosis 

scaling coefficient for the WLSM estimator is reported (ω4=0.723, but, since our overall 

results will remain the same with or without this correction, this was not applied to adjust 

the chi-square tests.)

The next model (5e) is the same, but allows proportional auto-regressive changes without 

slopes, and it does not fit as well. The final model (5f) allows both types of changes to the 

ordinal scales, and it fits much better (i.e., χ2=94 on df=25, so Δχ2=80 on Δdf=1). Assuming 

this is our final GPA model, we have: (1) unequal distances in GPA scaling, (2) small 

positive changes in slopes over grade levels with large variations (µ1=0.07, σ1
2=0.78), (3) 

large positive proportional changes from one GPA level to another (β=0.84), and (4) even 

larger random changes (ψ2=0.70). In this comparison, the first three models for GPA suggest 

the dual change is needed – all models for ordinal GPA* suggest unequal but ordered 

intervals, and the dual change model fits best. A plot of the expected values from this GPA* 
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model is drawn in Figure 6a and this shows a small but significantly positive shift in the 

mean over grade levels, with increasing individual differences in trajectories.

Results for Univariate Dynamic Models of Depressive Symptoms Over Four Grade Levels

The second set of longitudinal results of Table 6 is based on alternative change models for 

the WCESD trajectories (in Figure 1b). The first three models (6a, 6b, 6c) assume interval 

scaled data and models are fit in increasing order of complexity. First, a baseline model with 

intercepts only is fitted (not shown) and this yields χ2=74 on df=11. The first model listed in 

Table 6a is the linear change model with one slope (Model 6a) and fits much better with 

χ2=31 on df=8 (so ε=0.027), so the change in fit is large too (Δχ2=43 on Δdf=3). This is also 

a remarkably small misfit for such a large sample size (N>7,000). The mean intercept for the 

9th grade is reasonable (µ0=1.48 days) and the mean slope is negative but small (µ1=−0.03) 

indicating only small average changes over grade levels. The variability in these components 

shows somewhat large initial differences (σ0
2=0.57) with small systematic changes 

(σ1
2=0.01) and larger random changes (ψ2=0.49). The second model (6b) forces the 

systematic slope components to be zero, but allows an autoregressive component (β=−0.13) 

to allow changes to accumulate and level off. This AR(1) model seems to fit the WCESD 

data very well (χ2=21 on df=8 so ε=0.02). The third model, termed a Dual change, allows 

both linear and autoregressive changes to occur, and this leads to the best fit (χ2=29 on df=7 

so ε=0.02). This model suggests more complex changes due to the negative mean slope (µ1=

−1.48) combined with positive autoregressive changes (β=0.03), implying more complex 

grade level patterns in the WCESD; however, this model is not an improvement in fit. 

Indeed, the interval WCESD seems to fluctuate from one time to the next without a 

systematic linear change.

The second set of three models (6d, 6e, 6f) assumes some ordinal thresholds are needed and 

then re-examines the same change models. Here we need to place several additional 

constraints on the latent variables to assure identification (i.e., µ0=0, σ0
2=1) and estimate the 

5 thresholds (τ1−τ5). While we could allow the thresholds to change over grade levels, we 

do not consider this possibility here, and this assumption of scale invariance over grade 

levels leads to very little misfit. The estimated scaling coefficients (described earlier) range 

about 0 to +4 but suggest an unequal distance between WCESD points. The baseline model 

with intercepts only is fitted (not shown) and this yields χ2=61 on df=29, and therefore, the 

ordinal linear model fitted to WCESD* is a minor improvement in fit (i.e., χ2=14 on df=17, 

so Δχ2=47 on Δdf=12), with parameters representing some negative changes (µ1=−0.46, 

σ1
2=0.01) and larger random changes (ψ2=0.78). (Again, we note that the kurtosis scaling 

coefficient for the WLSM estimator is reported [ω4=0.772], because this has an effect on the 

resulting chi-square tests.)

The next model (6e) is the same, but allows proportional auto-regressive changes without 

slopes, and it fits only slightly better (i.e., χ2=11 on df=17). The final model (6f) allows both 

types of changes to the ordinal scales, and it fits about the same (i.e., χ2=14 on df=16). 

Assuming this is our final WCESD* model, we find: (1) unequal distances in WCESD 

scaling, (2) small negative changes in slopes over grade levels with large variations (µ1=

−0.04, σ1
2=0.10), (3) small positive proportional changes from one WCESD level to another 
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(β=0.03), and (4) even larger random changes (ψ2=0.77). In this comparison, the first three 

models for WCESD suggest that only the autoregressive part of the dual change is needed. 

All models for ordinal WCESD* suggest unequal but ordered intervals, and the dual change 

model is possible. A plot of the expected values from this WCESD* model is drawn in 

Figure 6b and this shows a small but significantly negative shift in the mean over grades, 

with increasing individual differences in trajectories.

Results from Bivariate Dynamic Latent Change Models

The results of Table 7 give the SEM parameter estimates for a dynamic system where GPA 

and WCESD are allowed to impact the trajectory of each another over 9th to 12th grades 

based on the full bivariate dynamic path diagram of Figure 5. The first model (Table 7a) is 

based on interval scaling of both variables, GPA and WCESD as observed, and the second 

model (7b) is based on estimation using the ordinal concepts developed up to this point. 

(The authors provide an Mplus computer program for these models in a Technical Appendix 

on their website). Perhaps it is obvious, but the dynamic results differ depending upon how 

the variables are scaled.

In the Interval measurement model (7a), we use the scale of measurement as it is calculated 

from the scores in the data, and this assumes an equal interval between score points for both 

GPA and WCESD. Of course, our prior plots and models fitted have suggested this is 

largely an incorrect assumption for both variables. Nevertheless, since interval scaling is 

typically assumed, we start from this point. As a result, we observe strong dynamic 

parameters with GPA, little or no dynamic action of the WCESD, and little or no systematic 

coupling across variables. The impact of GPA on the changes in WCESD is now negligible 

(γ=−0.25, t~1), and the impact of WCESD on the changes in GPA, while seeming a bit 

larger, is also negligible (γ=−0.63, t~1). The overall model fits the data well (χ2=56 on 

df=23, ε=0.014), but a model with either or both couplings set to zero (χ2=57 on df=24, or 

χ2=58 on df=25) fit about the same (ε=0.014). In contrast, a model where we assume no 

cross-lagged impacts at all (i.e., a “parallel process” model) does lead to a substantial loss of 

fit (χ2=83 on df=27) and a model assuming no slopes at all (i.e., a standard cross-lagged 

regression) is even worse (χ2=168 on df=32). Therefore, while there are some dynamic 

influences operating in the interval scaling, the direction of impacts over grade levels in not 

very clear – GPA and WCESD appear to be correlated by not dependent processes.

In the Ordinal measurement model (Table 7b), we do not assume the scale points have equal 

distance among them, but, as defined earlier, we estimate the differences using the 

thresholds (τ). This use of a latent variable measurement model for the GPA* and the 

WCESD* requires some kinds of identification constraints and we employ the ones used 

earlier (µ0=0, σ0
2=1), but now for both variables. When the dynamic model is estimated for 

these ordinal latent variables, a result emerges: the impact of GPA* on the changes in 

WCESD* is clearly negligible (γ=−0.07, t<1), but the impact of WCESD* on the changes in 

GPA* is now significant and large (γ=−2.17, t>2.5). The fits listed show models where: (a) 

the overall model fits the data well (χ2=83 on df=50, ε=0.009), (b) a GPA*→ WCESD* 

coupling set to zero fits just as well (χ2=82 on df=51), (c) the WCESD*→ GPA* coupling 

set to zero does not fit as well (χ2=113 on df=51), and (d) both couplings set to zero does not 
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fit either (χ2=111 on df=52). In addition, a model where we assume no cross-lagged impacts 

at all (i.e., a “parallel process” model) leads to a substantial loss of fit (χ2=191, on df=54) 

and a model assuming no slopes at all (i.e., a standard cross-lagged regression) is even 

worse (χ2=1172 on df=59). Therefore, in this ordinal scaling there seems to be directional 

dynamic influences operating – the direction of impacts accumulated over all grade levels 

suggests that WCESD*→ GPA* and not the other way around.

The use of a vector field plot was introduced to assist in the interpretation of the size of the 

impacts of the dynamic results (see Boker & McArdle, 2005). In Figure 7, these kinds of 

vector field plots are displayed for both the Interval model (Table 7a, Figure 7a) and for the 

Ordinal model (Table 7b, Figure 7b). In both plots we derive the expected direction of the 

trajectory for all points across a reasonable span of scale points. We then display these 

expectations as small arrows (i.e., directional derivatives) and we interpret the overall 

picture as in terms of the overall flow of the arrows. We include a 95% confidence ellipsoid 

around the starting points based on the available data, but we recognize that expectation 

outside of these boundaries may be among the most interesting flows in the diagram. The 

first display (Figure 7a) shows the Interval model with very little cross-variable movement, 

especially inside the 95% bounds of the observed data. The second display (Figure 7b) 

shows the Ordinal model has a little trace of cross-variable movement, where the GPA* is 

moving down for increasing levels of WCESD*. In both cases there is exaggerated 

movement outside the 95% bounds of the observed data, but these arrows reflect 

expectations for scores that do not appear in the current data. There does not appear to be 

any dynamic action in the Interval model, but there is some important dynamic action in the 

Ordinal model where the WCESD* effects changes in the GPA* and not the other way 

around.

Results for Group Differences in Linear Dynamic Models

To add to our understanding of the dynamics, we can compare demographic groups, such as 

Hawaiians and Non-Hawaiians, and Females versus Males. There are several ways to 

consider group differences in the bivariate latent difference scores models, and we present a 

few of these analyses next (for details, see McArdle, 2009; McArdle & Hamagami, 1996). 

In one form of a multi-level DSEM, we simply use the group information to describe the 

distribution of the latent level and latent slopes. This is equivalent to suggesting that the 

dynamic process based on the coupling coefficients is invariant over groups, but that the 

position of the groups may differ in the vector field (i.e., different 95% confidence 

ellipsoids). A more flexible way to deal with these dynamic models is to examine the 

possibility of qualitative differences in dynamic systems among the WCESD* and GPA* 

longitudinal processes over the groups – that is, we ask, “Do the dynamics operate the same 

way in each sub-group?” One practical way to examine this form of invariance is to split up 

the data into groups, allow the dynamics to differ, and see if these relaxed assumptions 

improve the model fit substantially. This simple strategy requires a multiple group approach 

and, to retain power within each group, many participants are needed within in each group 

(McArdle & Hamagami, 1996). By splitting up the data into only four groups based only on 

Ethnicity and Gender we can meet the sample size requirements in the HHSHS. Results for 

this multiple group form of group dynamics is presented in Table 8 and Figure 8.
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The resultant bivariate dynamics for the four adolescent groups are first listed separately in 

Table 8 – i.e., results are listed for the Male-Hawaiian adolescent group (Table 8a and 

Figure 8a), the Male Non-Hawaiian group (Table 8b and Figure 8b), and so on. In all 

groups, the status of WCESD* dictates how both WCESD* and GPA* change. WCESD* 

alone seems to decline itself, while GPA* is negatively influenced by the status of 

depression. The significant negative coupling of WCESD* on a change score of GPA* 

intimates that a change in GPA* is solely based on the previous state of WCESD*. The 

higher the depressive state at the current state, the larger the negative change in GPA*. 

While the plots in Figure 8 are not exactly the same, they are all very similar.

We started with the separate models of Table 8 and added invariance constraints to the four-

group model, and we found: (1) A model which is invariant over Ethnicity yields a relatively 

small loss of fit of Δχ2 =50 on Δdf = 13; and (2) A model which is invariant over Gender 

yields a relatively large loss of fit of Δχ2 =321 on Δdf = 13. As a result, the idea that these 

subgroups should be treated as one large group having equivalent dynamic systems is a 

reasonable one, except for some notable Gender differences. That is, while there are slightly 

different parameters for Hawaiian and Non-Hawaiians, there is little evidence for 

differences in dynamic systems for different Ethnic groups. However, it appears Males and 

Females are operating on slightly different dynamic systems and should probably not be 

combined.

Finally, to check our within-time equality constraints (on βs and γs) we examined the 

equality of dynamic constraints over time. In the previous models listed above we required 

the same dynamic result to appear over every time interval – from 9th to 10th, 10th to 11th, 

and 11th to 12th. In these final analyses, we relaxed these dynamic assumptions, looked at 

the groups as a whole, and within each separate sub-group, and we basically found no 

evidence for differential dynamics over grade level or time.

Discussion

The primary issue raised in this paper is not a new one – “Does depression lead to poor 

academic achievement OR does poor academic achievement lead to depression?” Of course, 

it would not be ethical to deal with this kind of question on a randomized experimental trial 

design (see McArdle & Prindle, 2008). As a practical alternative, we dealt with this 

substantive question on a statistical basis by using contemporary models with three features: 

(1) A large set of relevant data was collected on adolescents using a cohort sequential design 

with intentionally incomplete pieces. (2) An accounting was made of scale differences 

between GPA and CESD. (3) A linear dynamic model was fitted, and examined in several 

ways, including some accounting for group differences. The overall result differs from the 

previous models in at least three important ways – dealing with incomplete data, scaling 

issues, and dynamic inferences. First, we used all the data at all occasions of measurement in 

an attempt to provide the best estimates available for any model fitted.

Second, we demonstrated that that the scaling of the variables can make a difference in the 

dynamic interpretation between academic achievement (GPA) and depressive symptoms 

(CESD). From our results, we learned that the scaling of the WCESD is highly skewed (see 
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Figure 3) and we know this limits the inferences that can be made using standard interval 

score models. In addition, the categories of the GPA scale used here were also not equal, and 

this led to additional limits. It is not so surprising that when we examined alternative latent 

change models for either variable, we found that both the form and size of the changes were 

related to the measurement or scaling of the variables used in the change model. But the 

biggest differences arose when we tried to link the repeated measures data from one grade 

level to the next over both variables. Here we first established no dynamic linkage in the 

interval scaled data. However, when we used an ordinal scaling of both variables, we found 

out that prior levels of WCESD* lead to subsequent GPA* changes in the next grade level. 

Any true dynamic expression, no matter how large, could have been masked by 

impoverished measurement. The typical GPA and/or CESD scaling may be considered in 

this respect. That is, it may be that the constructs of achievement and depression are clearly 

linked over time, but the typical measurement with GPA and the CESD may not be the best 

way to understand these processes. Perhaps the fact that we cannot fit a good dynamic 

expression of change without good measurement of the construct should not be a great 

surprise either.

And third, in general, affective states of youth in our sample from Hawai‘i seemed to 

manifest in how they focused on school performances. This has many implications from 

clinical and prevention standpoints (see also Hishinuma et al., in press). For example, 

screening for depressive symptoms, major depression, and dysthymia, in conjunction with 

appropriate identification and treatment may prevent future poor academic performance and 

perhaps prevent academic failure and other comorbid delinquency behaviors (e.g., dropping 

out of school, substance use, suicide). In addition, given that depression is typically 

internalized and often not identified by schools aside from the outward manifestations of 

depression (e.g., changes in patterns in eating and sleeping), decreases in academic 

achievement may be a marker for schools that depressive symptoms may have preceded or 

are currently occurring and causing the lowered academic performance.

In our final analyses, we learned more about gender differences and ethnicity differences. In 

these analyses, we found the ethnic differences were not apparent, but the gender differences 

were large from a number of points of view. That is, the females seemed to be experiencing 

both more of, and a potentially more virulent form of an impact of increasing depressive 

symptoms leading to lowering of changes in academic achievement. These finding suggest 

that screening for prevention and treatment may be particularly important for girls.

There are many limitations of the modeling approach used here, some of these based on the 

current analyses and some based on the available data. The statistical model used is fairly 

flexible, but it still presumes invariance at several levels largely because parameter 

identification becomes much more difficult when more complexity is added. Our initial 

assumptions about interval scaling were relaxed and made ordinal, but the results presented 

here did not fully evaluate the assumptions of an invariant over-grade measurement model, 

and these assumptions are worthwhile examining in more detail. In addition, for example, in 

all the DSEMs fitted here, we assumed a dynamic process that takes the same amount of 

time no matter what pair of grade levels we were considering. We recognize that it is 

possible that more changes occur between some grade levels (i.e., Grades 9 and 10) than 
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between others (i.e., Grades 10 and 11), or that the changes between longer times is not a 

simple accumulation (i.e., Grades 9 to 11 is a function of the other times).

The data we used were somewhat limited as well. For example, the assumption of invariance 

over different patterns of incomplete data is likely to be incorrect to some degree and we 

know that specific forms of self-selection effects can lead to parameter bias (see McArdle & 

Hamgami, 1992). There were also no other measured variables defined in this system, 

although surely there are other sources to the changes in both GPA and CESD (Hishinuma, 

Foster et al., 2001). For example, it is likely that sources of individual differences outside 

the school setting are responsible for the additional influences, and we have not tried to take 

into account other sources of family support (but see Andrade et al., 2006). Finally, the 

group differences models only attempted to account for observed group differences in 

ethnicity and gender, and it is likely that latent sub-groups or classes of similar groups of 

adolescents were involved (see Flahrety, 2008; McArdle & Prindle, 2008; Van Horn et al., 

2009). It is possible for example, to isolate groups of adolescents for whom GPA → 

ΔDepression, and to find others for whom Depression→ ΔGPA. For all of these reasons, the 

substantive results presented may not replicate in further analyses of key sub-groups.

The dynamic analyses presented here clearly pointed out a few problems that can be 

overcome by using contemporary modeling procedures. This DSEM approach can be used 

to turn important developmental questions about temporal sequences into statistically 

powerful hypotheses. The fact that this can be done in the presence of ordinal level 

measurement and large amounts of incomplete data was also demonstrated, and this is a 

necessity for most real life-situations. We hope this approach can be useful for many other 

studies where multivariate longitudinal data have been collected to gain some insight into an 

ongoing developmental process. Such findings, in turn, should have both scientific and 

applied value.
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Figure 1. 
Observed longitudinal trajectories on the two key indicators variable for a random subset of 

n=30 persons. Figure 1a: Observed longitudinal trajectories for GPA; Figure 1b: Observed 

longitudinal trajectories for WCESD.
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Figure 2. 
Observed within-grade-level distributions of Grade Point Average (GPA) for all persons 

(N>7,000).
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Figure 3. 
Observed within-grade-level distributions for Weighted Center for Epidemiologic Studies-

Depression (WCESD) for all persons (N>7,000).
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Figure 4. 
A univariate dual change score model to examine trajectories on grade level changes for 

each indicator (X). The model includes an estimate for intercept (g0), mean intercept (µ0), 

and mean slope (µ1). Notes: The α represents constant changes and defines the form of the 

slope factor g1 (i.e., a=1 is linear change). The β represents the size of the proportional auto-

regressive changes. A correlation between the intercept and slope (ρ01) is allowed, and the 

error variance (ψ2) is assumed to be constant at each grade level.
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Figure 5. 
A bivariate biometric dual change score model trajectories over grade level changes in two 

measured variables (Y and X). Notes: Error variance (ψ2) is assumed to be constant at each 

grade level within each factor; αy and αx represent constant change related to the slope 

factors ys and xs; βy and βx represent proportional change in Y and X; and cross-trait coupling 

is indicated by γyx and γxy. The model includes estimates for intercepts (y0 and x0), mean 

intercepts (µy0 and µx0), and mean slopes (µy1 and µx1). Other parameters are used to 

generate the decomposition of the correlation between the intercept and slope for X and Y.
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Figure 6. 
Expected longitudinal trajectories on the two key indicators variable for a random subset of 

n=30 persons. Figure 6a: Expected longitudinal trajectories for GPA* (from Table 5, Model 

5d); Figure 6b: Expected longitudinal trajectories for WCESD* (from Table 6, Model 6d).
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Figure 7. 
Vector field plots of expected longitudinal trajectories from the Interval and Ordinal 

bivariate latent change score (BLCS) models (see Table 7). Figure 7a: Interval Scale. Figure 

7b: Ordinal Scale.
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Figure 8. 
Vector field plots of expected longitudinal trajectories from the multiple group bivariate 

latent change score (BLCS) models (see Table 8).
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Table 4

Estimated Pearson Product Moment (or Tetrachoric) Correlations from Hawaiian High Schools Health Survey 

for Grade Point Averages (GPAs) and the Center for Epidemiologic Studies-Depression (CESD) Scale

a Correlations of Interval GPA Over Time (and Ordinal GPA*)

Correlations GPA[9] GPA[10] GPA[11] GPA[12]

GPA[9] 1.00 (1.00)

GPA[10] .590 (.610) 1.00 (1.00)

GPA[11] .561 (.568) .601 (.618) 1.00 (1.00)

GPA[12] .494 (.524) .476 (.513) .587 (.609) 1.00 (1.00)

b Correlations of Interval WCESD Over Time (and Ordinal WCESD*)

Correlations WCESD[9] WCESD[10] WCESD[11] WCESD[12]

WCESD[9] 1.00 (1.00)

WCESD[10] .472 (.550) 1.00 (1.00)

WCESD[11] .452 (.482) .503 (.539) 1.00 (1.00)

WCESD[12] .458 (.509) .453 (.511) .520 (.563) 1.00 (1.00)

c Correlations of Interval GPA with Interval WCESD (and Ordinal GPA* with WCESD*)

Correlations GPA[9] GPA[10] GPA[11] GPA[12]

WCESD[9] −.130 (−.154) −.086 (−.085) −.063 (−.037) −.122 (−.082)

WCESD[10] −.095 (−.077) −.148 (−.162) −.082 (−.152) −.059 (−.076)

WCESD[11] −.098 (−.109) −.120 (−.149) −.135 (−.141) −.080 (−.117)

WCESD[12] −.096 (−.223) −.094 (−.174) −.083 (−.148) −.122 (−.156)

Note:

*
indicates ordinal version of interval scale; see sample sizes in Table 1.

Struct Equ Modeling. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

McArdle et al. Page 38

T
ab

le
 5

A
lte

rn
at

iv
e 

L
at

en
t C

ur
ve

 R
es

ul
ts

 f
ro

m
 F

itt
in

g 
U

ni
va

ri
at

e 
D

ua
l C

ha
ng

e 
Sc

or
e 

M
od

el
 to

 D
if

fe
re

nt
 S

ca
lin

gs
 o

f 
G

ra
de

 P
oi

nt
 A

ve
ra

ge
s 

(G
PA

s)
 (

O
rd

in
al

 

G
PA

* )

P
ar

am
et

er
s 

&
 F

it
(a

)
In

te
rv

al
G

P
A

L
in

ea
r

C
ha

ng
e

(b
)

In
te

rv
al

G
P

A
A

R
(1

)
C

ha
ng

e

(c
)

In
te

rv
al

G
P

A
D

ua
l

C
ha

ng
e

(d
)

O
rd

in
al

G
P

A
*

L
in

ea
r

C
ha

ng
e

(e
)

O
rd

in
al

G
P

A
*

A
R

(1
)

C
ha

ng
e

(f
)

O
rd

in
al

G
P

A
*

D
ua

l
C

ha
ng

e

F
ix

ed
 E

ff
ec

ts

M
ea

n 
in

te
rc

ep
t, 

µ 0
2.

65
 (

21
1)

2.
69

 (
20

1)
2.

68
 (

21
0)

=
0

=
0

=
0

M
ea

n 
sl

op
e,

 µ
1

0.
09

 (
17

.)
=

0
−

1.
79

 (
3.

3)
0.

14
 (

14
)

=
0

0.
07

 (
4.

6)

C
on

st
an

t c
ha

ng
e,

 α
=

1
=

0
=

1
=

1
=

0
=

1

Pr
op

or
tio

n 
ch

an
ge

, β
=

0
0.

03
7 

(1
5)

0.
69

 (
3.

4)
=

0
=

0.
69

 (
3.

2)
0.

84
 (

3.
3)

Sc
al

in
g 

co
ef

fi
ci

en
ts

, T
=

1
=

1
=

1
−

1.
8,

 −
;1

.3
−

.7
0,

 −
.3

0
.0

6,
 .6

6
1.

2,
 1

.8

−
2.

0,
 −

;1
.5

−
.7

7,
 −

.3
1

.0
7,

 .7
5

1.
3,

 2
.0

−
1.

9,
 −

;1
.4

−
.8

0,
 −

.3
0

.0
3,

 .6
7

1.
2,

 1
.9

V
ar

ia
bl

e 
In

te
rc

ep
ts

, µ
=

0
−

0.
07

 (
3.

6)
=

0
=

0
0.

16
 (

15
)

=
0

R
an

do
m

 E
ff

ec
ts

In
te

rc
ep

t V
ar

ia
nc

e,
 σ

02
0.

42
 (

25
)

0.
42

 (
25

)
0.

40
 (

25
)

=
1

=
 1

=
1

Sl
op

e 
va

ri
an

ce
, σ

12
0.

02
 (

5.
1)

=
0

1.
22

 (
2.

1)
0.

04
 (

6.
3)

=
0

0.
78

 (
1.

81
)

C
om

m
on

 s
lo

pe
-l

ev
el

, σ
01

−
0.

05
 (

7)
=

0
−

0.
29

 (
4.

1)
−

0.
11

 (
8.

7)
=

0
−

.8
8 

(−
3.

6)

U
ni

qu
e 

va
ri

an
ce

, ψ
2

.2
2 

(3
5)

.0
27

 (
38

)
.2

2 
(3

5)
0.

48
 (

18
)

0.
70

 (
27

)
0.

53
 (

18
)

R
es

id
ua

l V
ar

ia
nc

e,
 σ

e2
=

0
−

0.
03

 (
5.

7)
=

0
=

0
−

0.
05

 (
2.

9)
=

0

G
oo

dn
es

s 
of

 F
it

M
is

fi
t i

nd
ex

 χ
2  

/ d
f

48
./8

11
4.

/8
24

./7
17

4.
/2

6
24

6.
/2

6
94

./2
5

C
ha

ng
e 

in
 f

it 
Δ

χ2  
/ Δ

df
35

0.
/3

28
4.

/3
24

./1
; 9

0.
/1

98
5.

/3
91

3.
/3

80
/1

; 1
52

./1

W
L

SM
 s

ca
lin

g 
fa

ct
or

 κ
1

1
1

0.
72

3
0.

73
9

0.
65

1

R
M

SE
A

 ε
.0

27
.0

44
.0

19
.0

29
.0

34
.0

20

N
ot

e:
 W

ei
gh

te
d 

le
as

t s
qu

ar
es

 m
ea

n 
(W

L
SM

) 
es

tim
at

or
 b

as
ed

 o
n 

w
ei

gh
te

d 
le

as
t s

qu
ar

es
 p

lu
s 

m
ea

n 
ad

ju
st

ed
 v

ar
ia

nc
es

. S
am

pl
e 

si
ze

 N
=

6,
89

6,
 1

5 
pa

tte
rn

s 
of

 in
co

m
pl

et
e 

da
ta

; L
ev

el
 O

nl
y 

B
as

el
in

e 
fo

r 
th

e 
tw

o 
sc

al
in

gs
 a

re
 G

PA
=

39
8/

11
 w

ith
 ε

=
0.

07
1,

 a
nd

 G
PA

* =
11

59
/2

9,
 κ

=
0.

87
1,

 ε
=

0.
07

5.
 O

bt
ai

n 
T

ec
hn

ic
al

 A
pp

en
di

x 
(f

ro
m

 a
ut

ho
rs

) 
fo

r 
M

pl
us

 in
pu

t a
nd

 o
ut

pu
t. 

A
R

 =
 a

ut
or

eg
re

ss
io

n.
 R

oo
t M

ea
n 

Sq
ua

re
 E

rr
or

 o
f 

A
pp

ro
xi

m
at

io
n 

=
 R

M
SE

A
.

Struct Equ Modeling. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

McArdle et al. Page 39

T
ab

le
 6

A
lte

rn
at

iv
e 

L
at

en
t C

ur
ve

 R
es

ul
ts

 f
ro

m
 F

itt
in

g 
U

ni
va

ri
at

e 
D

ua
l C

ha
ng

e 
Sc

or
e 

M
od

el
 to

 I
nt

er
va

l a
nd

 O
rd

in
al

 S
ca

lin
gs

 o
f 

th
e 

W
ei

gh
te

d 
C

en
te

r 
fo

r 

E
pi

de
m

io
lo

gi
c 

St
ud

ie
s-

D
ep

re
ss

io
n 

(W
C

E
SD

) 
Sc

al
e 

(r
es

ca
le

d 
ve

rs
io

n 
of

 1
3 

ite
m

s 
of

 F
ac

to
r 

1)

P
ar

am
et

er
s 

&
 F

it
(a

)
In

te
rv

al
W

C
E

SD
N

o 
A

R
C

ha
ng

e

(b
)

In
te

rv
al

W
C

E
SD

A
R

(1
)

C
ha

ng
e

(c
)

In
te

rv
al

W
C

E
SD

D
ua

l
C

ha
ng

e

(d
)

O
rd

in
al

W
C

E
SD

*
L

in
ea

r
C

ha
ng

e

(e
)

O
rd

in
al

W
C

E
SD

*
A

R
(1

)
C

ha
ng

e

(f
)

O
rd

in
al

W
C

E
SD

*
D

ua
l C

ha
ng

e

F
ix

ed
 E

ff
ec

ts

M
ea

n 
in

te
rc

ep
t, 

µ 0
1.

48
 (

91
)

1.
60

 (
10

0)
1.

47
 (

10
3)

=
0

=
0

=
0

M
ea

n 
sl

op
e,

 µ
1

−
0.

03
 (

4.
3)

=
0

−
1.

48
 (

−
9.

1)
−

0.
46

 (
2.

5)
=

0
−

0.
04

 (
1.

5)

C
on

st
an

t c
ha

ng
e,

 α
=

1
=

0
=

1
=

1
=

0
=

1

Pr
op

or
tio

n 
ch

an
ge

, β
=

0
−

0.
13

 (
4.

0)
0.

03
 (

0.
8)

=
0

−
0.

07
 (

2.
0)

0.
03

 (
0.

4)

Sc
al

in
g 

co
ef

fi
ci

en
ts

, T
=

1
=

1
=

1
0.

5,
 1

.4
2.

0,
2.

7,
 3

.6

0.
5,

 1
.4

2.
0

2.
6,

 3
.4

0.
5,

 1
.4

2.
0

2.
7,

 3
.6

V
ar

ia
bl

e 
In

te
rc

ep
ts

, µ
=

0
0.

18
 (

3.
4)

=
0

=
0

−
0.

05
 (

2.
6)

=
0

R
an

do
m

 E
ff

ec
ts

In
te

rc
ep

t V
ar

ia
nc

e,
 σ

02
0.

57
 (

20
)

0.
51

 (
15

)
0.

53
 (

22
)

=
1

=
1

=
1

Sl
op

e 
V

ar
ia

nc
e,

 σ
12

0.
01

 (
1.

2)
=

0
0.

56
 (

17
)

0.
01

1 
(0

.6
)

=
0

0.
10

 (
0.

3)

C
om

m
on

 s
lo

pe
-l

ev
el

, σ
01

−
0.

04
 (

20
)

=
0

−
0.

54
 (

20
)

−
0.

04
 (

1.
1)

=
0

−
0.

30
 (

0.
5)

U
ni

qu
e 

V
ar

ia
nc

e,
 ψ

2
0.

49
 (

38
)

0.
44

 (
19

)
0.

50
 (

37
)

0.
78

 (
8.

8)
0.

67
 (

7.
0)

0.
77

 (
9.

7)

R
es

id
ua

l V
ar

ia
nc

e,
 σ

e2
=

0
0.

06
 (

2.
0)

=
0

=
0

0.
11

 (
1.

7)
=

0

G
oo

dn
es

s 
of

 F
it

M
is

fi
t i

nd
ex

 χ
2  

/ d
f

31
.3

 / 
8

21
.9

 / 
8

29
.2

 / 
7

13
.7

 / 
17

10
.7

 / 
17

13
.8

 / 
16

C
ha

ng
e 

in
 f

it 
Δ

χ2  
/ Δ

df
42

.7
 / 

3
51

.1
 / 

3
1.

9/
1;

 −
8.

3/
1

47
.3

 / 
3

50
.3

 / 
3

−
0.

1/
1;

−
2.

9/
1

W
L

SM
 s

ca
lin

g 
fa

ct
or

 κ
1

1
1

0.
77

2
0.

79
6

0.
73

4

R
M

SE
A

 ε
0.

02
0.

02
0.

02
0.

00
0.

00
0.

00

N
ot

e:
 W

ei
gh

te
d 

le
as

t s
qu

ar
es

 m
ea

n 
(W

L
SM

) 
es

tim
at

or
 b

as
ed

 o
n 

w
ei

gh
te

d 
le

as
t s

qu
ar

es
 p

lu
s 

m
ea

n 
ad

ju
st

ed
 v

ar
ia

nc
es

. S
am

pl
e 

si
ze

 N
=

6,
94

2,
 1

5 
pa

tte
rn

s 
of

 in
co

m
pl

et
e 

da
ta

; L
ev

el
 O

nl
y 

B
as

el
in

e 
fo

r 
th

e 
tw

o 
sc

al
in

gs
 a

re
 W

C
E

SD
=

74
./1

1 
w

ith
 ε

=
0.

03
, a

nd
 W

C
E

SD

* =
61

./2
0,

 m
=

0.
90

0,
 ε

=
0.

02
; A

R
 =

 a
ut

o-
re

gr
es

si
on

; R
oo

t M
ea

n 
Sq

ua
re

 E
rr

or
 o

f 
A

pp
ro

xi
m

at
io

n 
=

 R
M

SE
A

.

Struct Equ Modeling. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

McArdle et al. Page 40

Table 7

Dynamic Structural Equation Model (SEM) Results from a Bivariate Dual Change Score Model for Interval 

and Ordinal Scalings of Grade Point Averages (GPAs) and Weighted Center for Epidemiologic Studies-

Depression (WCESD) Scale, including Alternative Misfits

(a) Interval Scaling (b) Ordinal* Scaling

Parameters GPA WCESD GPA* WCESD*

Fixed Effects

Mean intercept, µ0 2.68 (202) 1.48 (81) =0 (=0) =0 (=0)

Mean slope, µ1 −0.66 (−.58) 0.45 (.35) 0.026 (1.00) −0.052 (−2.34)

Constant change, α =1 =1 =1 =1

Proportional change, β 0.607 (2.57) 0.140 (.22) −0.109 (0.27) −0.010 (−0.02)

Coupling, γ GPA → WCESD 0.25 (−1.05) 0.074 (−0.37)

Coupling, γ WCESD → GPA 0.63 (−1.19) 2.170 (−2.57)

Scaling coefficients, T −1.8, −1.4, −0.7,
−0.3, 0.01, 0.6,

1.1, 1.7

0.5, 1.4,
2.0,

2.7, 3.6

Random Effects

Intercept variance, σ0
2 0.40 (24) 0.56 (15) =1 (=0) =1 (=0)

Slope variance, σ1
2 0.44 (1.2) 0.05 (.38) 4.58 (1.3) 0.01 (0.71)

Cova. Slope & Level, σ01 −0.31 (3.7) −0.12 (.39) −0.45 (−1.5) −0.03 (−0.07)

Unique variance, ψ2 0.22 (35) 0.49 (35) 0.43 (14.7) 0.81 (13.1)

Goodness-of-Fit

“Dual Coupling” Misfit 55.9 / 23 / 0.014 82.6 / 50 / 0.009

“No GPA→ WCESD” 56.7 / 24 / 0.014 82.0 / 51 / 0.009

“No WCESD→ GPA” 57.7 / 24 / 0.014 113. / 51 / 0.013

“No Couplings” Misfit 58.0 / 25 / 0.014 111. / 52 / 0.013

“No Cross-Lags” Misfit 83.0 / 27 / 0.017 191. / 54 / 0.019

“No Slopes” Misfit 168. / 32 / 0.024 1172. / 59 / 0.060

Notes: “Dual” model sample size is N=7,258 with 130 patterns of incomplete data; Ordinal ω4= .725; Not all model parameters are listed here; 
Obtain Technical Appendix (from authors) for Mplus input and output.
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Table 8

Maximum Likelihood Estimate-Missing at Random (MLE-MAR) Estimates of Dynamical Parameters (and z-

values) based on Four Separate Bivariate Latent Change Score Models with Fixed Ordinal Measurement 

Model (Threshold Parameters based on Table 7)

(a) Male
Hawaiian
(n=2,531)

(b) Male
Non-Hawaiian

(n=1,192)

(c) Female
Hawaiian
(n=2,286)

(d) Female
Non-Hawaiian

(n=1,184)

µWCESD −.16 −.10 −.09 −.11

(2.37) (1.20) (3.32) (1.07)

µGPA .04 .08 −.02 .002

(1.50) (1.91) (.40) (.04)

βWCESD −.98 −1.02 −.86 −.65

(11.1) (9.61) (3.79) (3.78)

βGPA .42 .26 −.07 .25

(1.09) (.73) (.18) (.67)

γGPA →WCESD −.45 −.22 −.34 .15

(1.76) ( .77) (.69) (.33)

γWCESD →GPA −.72 −.92 −.99 −.65

(2.72) (6.22) (7.24) (2.78)

χ2 81 74 42 63

df 52 51a 52 50b

εa .015 .014 .000 .015

Notes:

a
indicates that there is no response in one category in WCESD, thus one less df; εa = Root Mean Square Error of Approximation

b
indicates that there is no response in the last category in WCESD in Grades 9 and 10, with the highest threshold parameter rendered un-estimable;

Variances of all slope components are fixed at 1.0 for simplicity; εa = Root Mean Square Error of Approximation
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